Syntheses of gyroscope-like molecules via three-fold ring closing metatheses of bis(phosphine) complexes trans- $\mathrm{L}_{y} \mathrm{M}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}$, and extensions to bis(phosphite) complexes trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}$

Katrin Skopek ${ }^{\text {a }}$, John A. Gladysz ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
${ }^{\mathrm{b}}$ Department of Chemistry, Texas A\&M University, P.O. Box 30012, College Station, TX 77842-3012, USA

Received 18 August 2007; received in revised form 1 November 2007; accepted 1 November 2007
Available online 7 November 2007

Abstract

The synthesis of trigonal bipyramidal, square planar, and octahedral bis(phosphine) complexes of the formula trans$L_{y} \mathrm{M}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}$, and their conversion to gyroscope-like molecules trans- $\mathrm { L } _ { y } \longdiv { \mathrm { M } (\mathrm { P } ((\mathrm { CH } _ { 2 }) _ { 2 n + 2 }) _ { 3 } \mathrm { P }) }$ via three-fold intramolecular alkene metathesis/hydrogenation sequences, is reviewed. New data involving bis(phosphite) complexes are then described. Reactions of $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ and $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}(n=\mathbf{a}, 3 ; \mathbf{b}, 4 ; \mathbf{c}, 5 ; \mathbf{d}, 6 ; \mathbf{e}, 8 ; \mathbf{f}, 9)$ afford the ligands $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(\mathbf{2 6 a}-\mathbf{f}, 79-96 \%)$. Reactions of 26a,b,e,f and $\mathrm{Fe}(\mathrm{BDA})(\mathrm{CO})_{3}\left(\mathrm{BDA}=\right.$ benzylideneacetone) give trans $-\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}(\mathbf{2 7 a}, \mathbf{b}, \mathbf{e}, \mathbf{f})$ as yellow or green oils in $17-64 \%$ yields after workup. Two representative complexes ($\mathbf{2 7 b} \mathbf{b}, \mathbf{e}$) are treated with Grubbs' catalyst ($2 \times 6.5 \mathrm{~mol} \%$). NMR analyses of the resulting crude trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{O}\right)_{3} \mathrm{P}\right)(\mathbf{2 8 b}, \mathbf{e})$ suggest mixtures of Z / E isomers and perhaps oligomers. Subsequent $\mathrm{ClRh}\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed hydrogenations afford the title molecules trans-Fe(CO$)_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2 n+2} \mathrm{O}\right)_{3} \mathrm{P}\right)(\mathbf{2 9 b}, \mathbf{e})$ as oils of $82-83 \%$ purity by ${ }^{31} \mathrm{P}$ NMR. Although various properties of $\mathbf{2 9 b}, \mathbf{e}$ can be compared to $\mathbf{2 7 b}, \mathbf{c}$, they could not be induced to solidify or crystallize, hampering purification. © 2007 Elsevier B.V. All rights reserved.

Keywords: Alkene/olefin metathesis; Hydrogenation; Iron; Carbonyl complexes; Phosphite complexes; Gyroscope

1. Introduction

In 1998, our research group began fundamental studies of alkene metatheses in metal coordination spheres [1], a subject that we comprehensively reviewed a few years ago [2]. This paper, which is derived from a presentation given at a symposium entitled "Frontiers in Organometallic Chemistry" (234th American Chemical Society National

[^0]Meeting, August, 2007), is based upon the portion of this work leading to gyroscope-like molecules [3-5]. In the first sections, syntheses and reactions of diphosphine-based complexes are reviewed. In later sections, new data involving diphosphite-based species are presented.

In the initial stages of our efforts, we were interested in developing routes to complexes that can be regarded as "insulated molecular wires" [6]. As exemplified by 2 in Scheme 1, these feature sp carbon or polyynediyl chains suspended between platinum endgroups, which are in turn encased by double helices derived from the sp^{3} carbon chains of termini-spanning α, ω-diphosphines [7]. A speculative approach employing ring closing alkene metathesis

Scheme 1 . Limiting modes for ring closing metathesis of $\mathbf{1}$.
of precursors of the type $\mathbf{1}$, followed by hydrogenation, was considered [7b,7c]. However, as shown in Scheme 1, an alternative cyclization mode is possible. This would afford 3, with two trans-spanning diphosphine ligands. We sought to investigate the feasibility of the latter with model compounds.

The complexes $\mathbf{4 b} \mathbf{- f}$, shown in Scheme 2 (top), contain trans monophosphine ligands bearing a single $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=$ CH_{2} substituent. These were treated with Grubbs' catalyst at only moderate dilution. Subsequent hydrogenations afforded 13-23-membered macrocycles ($\mathbf{5 b} \mathbf{-} \mathbf{f}$) in $43-82 \%$ overall yields [8]. Thus, such ring closing metatheses are exceedingly general; no upper bound on the ring size is yet apparent. Interestingly, when substrates of the type 1 (Scheme 1) are similarly reacted, products of the type 2 almost always dominate [7b,7c].

We then prepared similar complexes $\mathbf{6 b}-\mathbf{e}$ in which each monophosphine ligand contains two $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}$ substituents [9]. As shown in Scheme 2 (bottom), these can undergo either interligand metathesis to give $\mathbf{7 b}-\mathbf{e}$, or intraligand metathesis to give 8b-e. Surprisingly, only the former reaction mode is observed. In the case of $\mathbf{8 d}$, an authentic sample was synthesized, but none could be detected by ${ }^{31} \mathrm{P}$ NMR in the crude product. We have no explanation at present for this selectivity, or the preference for $\mathbf{2}$ in Scheme 1. However, we doubt that all possible metathesis products are thermodynamically sampled under the reaction conditions. Hence, catalysts that promote additional turnovers may afford different selectivities. As shown for 7b in Scheme 2, Grubbs' second generation ($\mathrm{H}_{2} \mathrm{IMes}$) catalyst often gives improved yields of thirteen-membered macrocycles.

In any event, the yields of the dimacrocyclic diphosphine complexes $\mathbf{7 b}-\mathbf{e}$ are lower than those of the monomacrocyclic diphosphine complexes $\mathbf{5 b} \mathbf{-}$. Higher dilutions are necessary, and mass spectra suggest the presence of diplatinum byproducts. Despite this inauspicious trend, we wondered whether it might be possible to realize detectable quantities of three-fold intramolecular metathesis products from similar substrates in which the monophosphine ligands contain three $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}$ substituents. Under the chromatographic conditions employed, such species would elute first.

(0.0024-0.0025 M)

5
$n=4, \mathbf{b}, 67 \%$
5, c, 82\% 6, d, 69\% 8, e, 53%

6
(0.00067-0.0034 M)

7
$n=4, \mathbf{b}, 20 \%\left(55 \%^{*}\right)$
5, c, 5\% 6, d, 38\%
8, e, 14%
*Grubbs' 2nd gen. cat.

Scheme 2. Metathesis/hydrogenation sequences with pentafluorophenyl platinum complexes with trans phosphine ligands that contain one or two $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}$ groups.

Thus, complexes of the type $\mathbf{9 b - d}$ (Scheme 3) were similarly synthesized and reacted [10]. However, no trace of the target trimacrocyclic diphosphine complexes could be found

Scheme 3. Attempted metatheses of pentafluorophenyl platinum complexes with trans phosphine ligands that contain three $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}$ groups.
in the crude reaction mixtures. Before hydrogenation, unreacted vinyl groups were evident.

2. Molecular gyroscopes

While investigating the preceding reactions, we became aware of work in the Garcia-Garibay laboratory directed at the synthesis of molecular compasses and gyroscopes $[3,5]$. These represent subsets of what can be termed molecular rotors [11]. Such assemblies are commonly dissected into rotators and stators. Since relative motion depends upon the frame of reference, the latter is assigned to the component with the greater moment of inertia. Representative compounds investigated by Garcia-Garibay are depicted in Scheme 4 (top; 10-12). Although the rotators are not "enclosed" by some type of superstructure, they are clearly sterically protected by the bulky endgroups. As illustrated with 12, the endgroups can be enlarged by introducing substituents.

Garcia-Garibay also drew attention to the utility of polar rotators, i.e. rotators that feature a permanent dipole moment (see 10). In principal, these can be exploited to orient the rotator in a static electric field (compass-like behavior), or compel unidirectional rotation in a rotating electric field. The latter is conceptually analogous to "pulling the string" of a toy gyroscope. The underlying physics - including limiting relationships involving the energy barrier for rotation and the frequency of the rotating field - has been reviewed in detail [11].

In the course of synthesizing the complexes in Scheme 2, we became attracted to the idea of transition-metal-based rotors. These would feature $\mathrm{L}^{\prime}-\mathrm{M}-\mathrm{L}^{\prime}$ axes defined by two trans ligands, and $\mathrm{L}_{y} \mathrm{M}$ rotators comprised of ancillary ligands. Indeed, the NMR properties of $\mathbf{5 d}$ indicated rapid passage of the chloride ligand through the seventeen-membered macrocycle on the NMR time scale, even at very low temperatures - a dynamic process for which a barrier could be measured with the smaller macrocycle $5 \mathrm{c}\left(\Delta H^{\dagger}\right.$ and ΔS^{\ddagger} : $6.0 \mathrm{kcal} / \mathrm{mol}$ and -13.9 eu), but proved impossible to observe in the case of $\mathbf{5 b}$.

$\mathrm{R}=\mathrm{H}$
$\mathrm{CH}_{2} \mathrm{O}\left(3,5-\mathrm{C}_{6} \mathrm{H}_{3}(t-\mathrm{Bu})_{2}\right)$
Scheme 4. Representative molecular rotors under investigation in the Garcia-Garibay group (top), and a turnstile-like molecule (bottom).

Despite the lack of encouraging results with $\mathbf{9 b - d}$ in Scheme 3, we thought that three-fold alkene metathesis still held promise as a route to "encapsulated" rotators. Importantly, macroscopic gyroscopes, which have a variety of technological applications, are to our knowledge always enclosed in protective housings to shield them from their environments. We therefore sought additional types of substrates for evaluation. We were particularly attracted to assemblies that would exhibit functional axes of rotation, and closely model the connectivities and symmetries of common toy gyroscopes. The latter implies $D_{n h}$ symmetry, most logically with $n=2-4$.

Before returning to our results, it should be noted that the descriptor 'gyroscope" has been applied to other types of organic and organometallic molecules in the literature [4]. Most of these are not relevant to this presentation. However, Moore has developed a series of macrocycles that he terms "turnstiles", as exemplified by $\mathbf{1 3}$ in Scheme 4 (bottom) [12]. The rotor is functional (provided the substituents R are small) and nearly of $D_{2 h}$ symmetry when $\mathrm{R}=\mathrm{H}$. Also, the rotator is sterically protected. In our view, these represent a sub-family of gyroscope-like molecules, and hold much promise for future research.

3. Three series of experiments from our group

This section treats all gyroscope-like molecules that we have synthesized by three-fold alkene metatheses of complexes with trans phosphine ligands of the type $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ [13-16]. Triarylphosphine-based systems that feature much larger macrocycles with semi-rigid segments are detailed elsewhere [17].

3.1. Trigonal bipyramidal substrates

As shown in Scheme 5, the substitution-labile iron tricarbonyl complex $\mathrm{Fe}(\mathrm{BDA})(\mathrm{CO})_{3}(\mathrm{BDA}=$ benzylideneacetone) [18] was treated with a series of phosphines $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$. Workups gave the trigonal bipyramidal adducts trans $-\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}(\mathbf{1 4 b}-\mathbf{e})$ in $68-75 \%$ yields. These were subjected to metathesis conditions similar to those employed in Scheme 2, followed by $\mathrm{ClRh}\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed hydrogenations. To our delight, the target gyroscope-like complexes $\mathbf{1 5 b} \mathbf{b}$ could be isolated in $50-74 \%$ overall yields [13,19]. Several could be crystallographically characterized.

Why are the three-fold alkene metatheses of $\mathbf{1 4 b} \mathbf{e}$ so much more successful than those of $\mathbf{9 b} \mathbf{- d}$? We believe that part of the answer involves the probable ground state conformation I depicted in Fig. 1. Since both the iron fragment $\mathrm{Fe}(\mathrm{CO})_{3}$ and the phosphines possess three-fold symmetry axes, the CO ligands and $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}$ groups can adopt perfectly staggered arrangements. This results in eclipsed $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}$ groups on the two phosphines, which are directed into the same $\mathrm{OC}-\mathrm{Fe}-\mathrm{CO}$ interstice. Consequently, 14b-e can be viewed as preorganized for three-fold metatheses.

The gyroscope-like complexes $\mathbf{1 5 b} \mathbf{b}$ e can be protonated [13,20], and one carbonyl ligand is easily replaced by NO^{+}. Nitrosylation affords a dipolar rotator, and lowers the symmetry such that the barrier to $\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{NO})^{+}$rotation can be probed by variable temperature ${ }^{13} \mathrm{C}$ NMR spectroscopy. The rotator in the complex with thirteenmembered macrocycles ($\mathbf{1 5 b}$) is locked. However, the barrier decreases in the higher homologs, and is easily quanti-

Fig. 1. Conformational energy minimum for trigonal bipyramidal complexes 14 and 27 (I), and representative conformations for square planar (II) and octahedral (III) analogs.
fied with the nitrosyl derivative of $\mathbf{1 5 d}\left(\Delta H^{\ddagger}\right.$ and $\Delta S^{\ddagger}: 9.5$ $\mathrm{kcal} / \mathrm{mol}$ and $-6.5 \mathrm{eu})$.

3.2. Square planar substrates

We sought insight regarding the unsuccessful reactions with 9b-d in Scheme 3. Thus, analogous square planar PdCl_{2} and PtCl_{2} adducts were prepared by standard methods [14]. As shown in Scheme 6 (top), similar metathesis/ hydrogenation sequences starting with $\mathbf{1 6 d}$ and $\mathbf{1 7 d}$ afforded the gyroscope-like complexes $\mathbf{1 8 d}$ and 19d in $37-43 \%$ overall yields. Although the yields of these seventeen-mem-

Scheme 6. Three-fold ring closing metathesis/hydrogenation sequences for square planar palladium, platinum, and rhodium complexes with trans phosphine ligands $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$.

Scheme 5. Three-fold ring closing metathesis/hydrogenation sequences for trigonal bipyramidal iron complexes with trans phosphine ligands $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$.

Scheme 7. Three-fold ring closing metathesis/hydrogenation sequences for octahedral rhenium complexes with trans phosphine ligands $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$.
bered macrocycles are lower than for the iron tricarbonyl analog 15d, the syntheses are scaleable and gram quantities can be prepared. However, yields with dibromide complexes analogous to $\mathbf{1 6 d}$ and $\mathbf{1 7 d}$ were much lower. Furthermore, substrates with shorter methylene chains (e.g., $\mathbf{1 6 b}, \mathbf{c}$) have afforded only oligomers under all conditions assayed to date. Substrates with longer methylene chains give gyroscope-like complexes, but in much lower yields than for iron analogs [21].

Thus, the replacement of the pentafluorophenyl ligand in 9d (Scheme 3) by the smaller chloride ligand in 17d allows access to a gyroscope-like complex. Given the lower yields with analogous dibromide complexes, we conclude that ligand size also plays a key role in the success of these sequences. Although we have not yet been able to obtain crystals of $\mathbf{1 6 d}, \mathbf{1 7 d}$, or related species that are suitable for structure determinations, one would expect a host of local conformational minima (e.g., II in Fig. 1), none of which are preorganized for three-fold alkene metathesis.

The two chloride ligands in 18d and 19d are easily substituted by bromide, iodide, and cyanide ligands. Interestingly, low temperature ${ }^{13} \mathrm{C}$ NMR spectra show that MX_{2} rotation in all of these complexes is rapid on the NMR time scale in solution. However, the introduction of longer thiocyanide, isothiocyanide, or phenyl ligands "brakes" the rotation. Many crystal structures have been determined, from which the radii of the rotators and other metrical parameters relevant to these phenomena can be calculated [14,21].

We wanted to test these generalizations with another square planar system. Thus, as shown in Scheme 6 (bottom), the rhodium carbonyl chloride complex 20d was synthesized [15]. Metathesis and hydrogenation proceeded in similar overall yield to give 21d, which features a dipolar rotator. The chloride ligand was easily substituted by iodide. The crystal structure of the latter showed a $89: 11$ disorder involving two rotator orientations. Low temperature ${ }^{13} \mathrm{C}$ NMR spectra indicated rapid rotation of the $\mathrm{Cl}-\mathrm{Rh}-\mathrm{CO}$ and I-Rh-CO rotators in solution. Interestingly, the latter could be "braked" by adding gaseous CO , which afforded a slower-rotating $\operatorname{IRh}(\mathrm{CO})_{2}$ species. Under a nitrogen atmosphere, the I-Rh-(CO) system was regenerated.

3.3. Octahedral substrates

Emboldened by the results in Scheme 6, we decided to try to extend this methodology to octahedral complexes. The mer rhenium halide complexes 22d and 23d shown in Scheme 7 are easily synthesized [16]. To our surprise, intramolecular three-fold alkene metathesis readily occurred. Following hydrogenation, the chloride and bromide complexes 24d and 25d were isolated in 61% and 37% overall yields. The crystal structures of both seventeen-membered macrocycles were determined. Low temperature ${ }^{13} \mathrm{C}$ NMR spectra showed the rapid rotation of the $\mathrm{XRe}(\mathrm{CO})_{3}$ moieties on the NMR time scale.

The substrates 22d and 23d clearly do not qualify as preorganized, as illustrated by the arbitrary conformation III in Fig. 1. However, the ligands on the rotator are relatively small, and as with the other complexes above, the halide ligands are easily substituted. In work not yet submitted for publication, we have extended these reactions to a variety of other octahedral chromium, molybdenum, tungsten, rhenium and osmium complexes, all with various combinations of carbonyl, nitrosyl, chloride, and bromide ligands [22]. We have not yet begun to vary the macrocycle size. Given the unexpected breadth of this chemistry, we were also curious regarding possible variations of the phosphorus donor ligand. This led to the series of experiments in the following section.

4. New results: extension to phosphite ligands

An obvious question is to what extent the stator in the above types of gyroscope-like complexes can be varied. One straight-forward extension would involve systems based upon dibridgehead diphosphites, thereby introducing six additional heteroatoms. This would in turn require the monophosphite ligands $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ (26). Given the ready commercial availability of α, ω-alkenols $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}$, it should be a simple matter to access an extended family of such species. The ligands 26a $(n=3)$ [23] and 26b $(n=4)$ [24] have been previously synthesized. One was prepared by the condensation of $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ and excess α, ω-alkenol; for the other, no details or characterization were given.

As shown in Scheme 8, the six monophosphites 26a-f were similarly synthesized on ca. 10 g scales in $79-97 \%$ yields after distillations (26a-d) or other workups (26e,f). The colorless oils were characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR as described in the experimental section. The ${ }^{13} \mathrm{C}$ spectra showed, in accord with much literature data [25], phosphorus coupled $\mathrm{POCH}_{2} \mathrm{CH}_{2}$ signals, with ${ }^{2} J_{\mathrm{CP}}>{ }^{3} J_{\mathrm{CP}}$ $(11.0-10.9 \mathrm{~Hz}$ and $5.0-4.9 \mathrm{~Hz})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 6 b}$ agreed with that previously reported [24]. All other features were routine.

We first sought to apply these ligands to $\mathrm{Fe}(\mathrm{CO})_{3}$-based systems, which as shown in Scheme 5 are the most versatile with respect to macrocycle size. There is also an extensive literature involving bis(phosphite) complexes trans $-\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OR})_{3}\right)_{2}[26-28]$. As shown in Scheme 9, $\mathrm{Fe}(\mathrm{BDA})(\mathrm{CO})_{3}$ and 26a,b,e,f (2.7 equiv.) were combined in toluene. The reactions were monitored by ${ }^{31} \mathrm{P}$ NMR. After 8-14 d, chromatographic workups gave the target complexes trans $-\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2} \quad(\mathbf{2 7 a}, \mathbf{b}$, e,f) as yellow or green oils in $17-64 \%$ yields. In contrast to the phosphine homologs in Scheme 5, and other iron phosphite complexes [28], they could not be induced to solidify or crystallize. This complicated their purification,

$$
\mathrm{P}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}+\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2} \longrightarrow \mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3},
$$

Scheme 8. Syntheses of phosphite ligands.

Scheme 9. Syntheses and three-fold ring closing metathesis/hydrogenation sequences for trigonal bipyramidal iron complexes with trans phosphite ligands $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$.
and only in the case of $\mathbf{2 7 e}$ could an acceptable microanalyses be realized [29].

Complexes 27a,b,e,f were characterized by NMR $\left({ }^{1} \mathrm{H}\right.$, ${ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$) and IR spectroscopy, and mass spectrometry. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed the customary vinyl signals, and POCH_{2} signals at 4.26-3.90 and 65.166.1 ppm . In contrast to the free phosphites, the latter were not detectably coupled to phosphorus. Other researchers have noted both broad singlets and resolved doublets for the $\mathrm{POCH}_{2} \mathrm{CH}_{2}$ signals of phosphite complexes [30]. The ${ }^{13} \mathrm{C}$ NMR spectra also showed a single peak for the CO ligands (212.2-213.0 ppm), in two cases with resolved phosphorus coupling (${ }^{2} J_{\mathrm{CP}}=39.8-39.5 \mathrm{~Hz}$). The ${ }^{31} \mathrm{P}$ signals (185.7-185.1 ppm) were as expected downfield of those of the free ligands ($140.0-140.5 \mathrm{ppm}$), and very close to that of trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)_{3}\right)_{2} \quad(182.3 \mathrm{ppm})$ [27]. The IR spectra exhibited a strong v_{CO} band at 1893$1895 \mathrm{~cm}^{-1}$. The mass spectra showed weak molecular ions, and weak ions corresponding to the loss of three CO ligands. The most intense ion always had the composition $\mathrm{FeP}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$.

Metatheses of two representative complexes, 27b and 27e, were investigated. As shown in Scheme 9, reactions with Grubbs' catalyst $\left(2 \times 6.5 \mathrm{~mol}^{\circ} \%\right)$ gave the crude metathesis products trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{O}\right)_{3} \mathrm{P}\right)(\mathbf{2 8 b}, \mathbf{e})$ as yellow oils in 52% and 45% yields. Complex 28b contained approximately 12% of material with unreacted vinyl groups, as assayed by ${ }^{1} \mathrm{H}$ NMR. The mass spectra of 28b,e now showed base peaks (100%) corresponding to the loss of three carbonyl ligands, supporting the formation of diphosphine cages. Molecular ions were also apparent. The ${ }^{31} \mathrm{P}$ NMR spectra showed several signals, consistent with a mixture of Z / E isomers, and likely oligomers.

Complexes 28b,e were hydrogenated under conditions similar to those used in Scheme 5. A variety of chromatographic workups were investigated in hopes of obtaining spectroscopically pure products. However, all efforts were thwarted, in part due to the oily nature of the products, and in part due to decomposition during extended chromatography. Despite these difficulties, the target complexes trans $-\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2 n+2} \mathrm{O}\right)_{3} \mathrm{P}\right) \quad(\mathbf{2 9 b}, \mathbf{e})$ clearly comprised $82-83 \%$ of the isolated material (92% crude yield, 29e). The mass spectra showed substantial molecular ions (10$20 \%$), as well as base peaks corresponding to the loss of three carbonyl ligands. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra exhibited OCH_{2} signals at $4.18-4.20$ and $65.6-66.3 \mathrm{ppm}$, essentially unchanged from the "open" analogs $27 a, b, \mathbf{e}, \mathbf{f}$. The CO signals were shifted slightly upfield (203.7 vs. $212.2-213.0 \mathrm{ppm}$), but the IR v_{CO} bands were unchanged (1895 vs. $1893-1895 \mathrm{~cm}^{-1}$). Hence, there is little if any "cage effect" on the spectroscopic properties.

Despite extensive efforts, 29b, e proved resistant to crystallization [20]. Given the obvious importance of highly pure samples for many of our objectives, this series of complexes was therefore abandoned. However, the phosphite
ligands 26a-f have been introduced into other metal fragments, from which crystalline polycyclized metathesis products - although not of the types in Fig. 8 - can be derived [31]. These will be reported in future publications. We note in passing that complexes of the type 2 (Scheme 1) that feature ether linkages in the flexible sp^{3} chain readily crystallize [4c]. Perhaps analogs of the gyroscope-like $\mathrm{Fe}(\mathrm{CO})_{3}$ complex 15 with ether linkages will be more tractable than 29b,e.

5. Summary

This article has reviewed existing syntheses of gyroscope-like complexes of the formula trans- $\mathrm{L}_{y} \mathrm{M}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{2 n+2}\right)_{3} \mathrm{P}\right)$, where L_{y} denotes the ancillary ligands of a trigonal bipyramidal $\left(\mathrm{L}_{3}\right)$, square planar $\left(\mathrm{L}_{2}\right)$, or octahedral $\left(\mathrm{L}_{4}\right)$ species. These are accessible by threefold intramolecular alkene metatheses of precursors trans$\mathrm{L}_{y} \mathrm{M}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}$, followed by hydrogenations. Small ancillary ligands (e.g., CO, Cl) are essential, and yields are highest for trigonal bipyramidal $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes, which are preorganized for intramolecular metathesis in their ground state conformations. Analogous diphosphite adducts trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2 n+2} \mathrm{O}\right)_{3} \mathrm{P}\right)$ can be synthesized by similar sequences, but are poorly tractable oils that resist purification.

6. Experimental

6.1. General

Reactions were carried out under dry N_{2} atmospheres unless noted. Chemicals were treated as follows: toluene, pentane, and THF, distilled from Na /benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, distilled from CaH_{2}; other solvents, distilled by rotary evaporation; $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\mathrm{CH}_{2}(97 \%$, Acros), $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2} \quad\left(\geqslant 90 \%\right.$, Fluka), $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=$ $\mathrm{CH}_{2}, \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}(2 \times \mathrm{TCI}, \geqslant 96 \%), \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{8^{-}}$ $\mathrm{CH}=\mathrm{CH}_{2}, \quad \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}=\mathrm{CH}_{2} \quad(2 \times$ Acros, $\quad 98-99 \%)$, $\mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3} \quad(\geqslant 97.0 \%$, Fluka), Grubbs' catalyst $\mathrm{Ru}(=\mathrm{CHPh})\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{Cl})_{2} \quad$ (Aldrich), and $\mathrm{ClRh}\left(\mathrm{PPh}_{3}\right)_{3}$ (97%, Lancaster), used as received.

NMR spectra were obtained on a 400 MHz spectrometer and referenced as follows: ${ }^{1} \mathrm{H}$ NMR, residual CHCl_{3} (7.24 ppm), $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}(7.15 \mathrm{ppm}), \mathrm{CDHCl}_{2}(5.32 \mathrm{ppm})$, or $\mathrm{CD}_{2} \mathrm{HCN} \quad(1.93 \mathrm{ppm}) ;{ }^{13} \mathrm{C}$ NMR, internal CDCl_{3} (77.0 ppm), $\mathrm{C}_{6} \mathrm{D}_{6}(128.0 \mathrm{ppm}), \mathrm{CD}_{3} \mathrm{CN}(118.7 \mathrm{ppm})$, or $\mathrm{CD}_{2} \mathrm{Cl}_{2}(53.5 \mathrm{ppm}) ;{ }^{31} \mathrm{P}$, external $\mathrm{H}_{3} \mathrm{PO}_{4}(0.00 \mathrm{ppm})$. IR and mass spectra were recorded on ASI React-IR 1000 and Micromass Zabspec instruments, respectively.

6.2. $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ (26a) [23]

A flask was charged with $\mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$ (5.919 g , $36.27 \mathrm{mmol})$ and $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\mathrm{CH}_{2} \quad(10.003 \mathrm{~g}$, 116.14 mmol), fitted with a water cooled condenser, and
heated at $100^{\circ} \mathrm{C}$ until $\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{2}$ no longer evolved. The residue was distilled ($90^{\circ} \mathrm{C}, 1.1 \times 10^{-2} \mathrm{mbar}$) to give 26a as a colorless oil ($8.100 \mathrm{~g}, 28.29 \mathrm{mmol}, 79 \%$).

NMR ($\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}$): ${ }^{1} \mathrm{H}, 5.81-5.71(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=)$, 4.96-4.74 (m, $\left.6 \mathrm{H},=\mathrm{CH}_{2}\right), 3.79-3.74\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 2.12-2.07 (m, 6H, CH2 $\mathrm{CH}=), \quad 1.70-1.63(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 138.2(\mathrm{~s}, \mathrm{CH}=), 116.0\left(\mathrm{~s},=\mathrm{CH}_{2}\right)$, $62.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 30.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $30.4\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{CH}=\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 140.0(\mathrm{~s})$.

6.3. $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ (26b) [24]

$\mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}(6.042 \mathrm{~g}, 37.02 \mathrm{mmol})$ and $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=$ $\mathrm{CH}_{2}(11.831 \mathrm{~g}, 118.12 \mathrm{mmol})$ were reacted in a procedure analogous to that used for 26a. A similar workup (distillation at $130^{\circ} \mathrm{C}, 8.0 \times 10^{-2} \mathrm{mbar}$) gave $\mathbf{2 6 b}$ as colorless oil $(10.670 \mathrm{~g}, 32.488 \mathrm{mmol}, 88 \%)$.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.70\left(\mathrm{ddt}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=\right.$ $\left.17.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{C} H=\right), 4.99$ (dd, $3 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.6 \mathrm{~Hz},=\mathrm{CH}_{E} H_{Z}$), $4.94\left(\mathrm{br} \mathrm{d}, 3 \mathrm{H},{ }^{3} \mathrm{JHHcis}=10.0 \mathrm{~Hz},=\mathrm{CH}_{E} \mathrm{H}_{Z}\right), 3.80(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.05\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{2}=\right), 1.41-1.70(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \quad 139.0$ (s, $\mathrm{CH}=$), $115.0 \quad$ (s, $\left.=C \mathrm{H}_{2}\right), 62.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 33.8\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{CH}=\right)$, $31.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=5.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 25.5\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, 140.4 (s).

6.4. $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(26 \mathrm{c})$

$\mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}(4.467 \mathrm{~g}, 27.37 \mathrm{mmol})$ and $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=$ $\mathrm{CH}_{2}(10.00 \mathrm{~g}, 87.57 \mathrm{mmol})$ were reacted in a procedure analogous to that used for 26a. A similar workup (distillation at $160^{\circ} \mathrm{C}, 3.0 \times 10^{-2} \mathrm{mbar}$) gave $\mathbf{2 6 c}$ as colorless oil $(9.160 \mathrm{~g}, 24.74 \mathrm{mmol}, 90 \%)$.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.81-5.74(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} H=)$, $5.00-4.89\left(\mathrm{~m}, 6 \mathrm{H},=\mathrm{CH}_{2}\right), 3.79-3.73\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 2.05-2.00 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 1.63-1.56 and $1.40-1.33$ $\left(2 \mathrm{~m}, 6 \mathrm{H}\right.$ and $\left.12 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 139.2$ (s, $C H=), 114.8 \quad\left(\mathrm{~s}, \quad=C \mathrm{H}_{2}\right), 62.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right.$, $\left.\mathrm{OCH}_{2}\right), \quad 34.1 \quad\left(\mathrm{~s}, \quad \mathrm{CH}_{2} \mathrm{CH}=\right), \quad 31.0 \quad\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $29.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 25.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 140.4$ (s).
6.5. $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(26 d)$
$\mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}(3.978 \mathrm{~g}, 24.37 \mathrm{mmol})$ and $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}$ $=\mathrm{CH}_{2}(10.00 \mathrm{~g}, 78.00 \mathrm{mmol})$ were reacted in a procedure analogous to that used for 26a. A similar workup (distillation at $180^{\circ} \mathrm{C}, 3.0 \times 10^{-2} \mathrm{mbar}$) gave $\mathbf{2 6 d}$ as colorless oil $(8.541 \mathrm{~g}, 20.71 \mathrm{mmol}, 85 \%)$.

NMR ($\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}$): ${ }^{1} \mathrm{H}, 5.83-5.73(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=)$, $5.00-4.90\left(\mathrm{~m}, 6 \mathrm{H},=\mathrm{CH}_{2}\right), 3.80-3.74\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $2.04-2.00\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.61-1.53$ and $1.40-1.27(2$ $\mathrm{m}, 6 \mathrm{H}$ and $\left.18 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 139.5(\mathrm{~s}, \mathrm{CH}=)$, $114.7\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 62.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=10.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 34.1$ (s, $\mathrm{CH}_{2} \mathrm{CH}=$), $31.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 29.3$ (s, $C \mathrm{H}_{2}$), 29.2 (s, $C \mathrm{H}_{2}$), $26.1\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 140.4$ (s).

6.6. $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ (26e)

$\mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}(3.264 \mathrm{~g}, 20.00 \mathrm{mmol})$ and $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}=$ $\mathrm{CH}_{2}(10.003 \mathrm{~g}, 64.05 \mathrm{mmol})$ were reacted in a procedure analogous to that used for 26a. The mixture was warmed under vacuum ($120^{\circ} \mathrm{C}, 1.0 \times 10^{-2} \mathrm{mbar}$) and 26e remained as a colorless oil that was $>98 \%$ pure by ${ }^{31} \mathrm{P}$ NMR (9.616 g , $19.4 \mathrm{mmol}, 97 \%$).

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.83-5.73(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=)$, 4.99-4.89 (m, 6H, $\left.=\mathrm{CH}_{2}\right), 3.78-3.73\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 2.04-1.98 (m, $\left.6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.65-1.55$ and $1.35-1.27$ $\left(2 \mathrm{~m}, 6 \mathrm{H}\right.$ and $\left.30 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{6}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 139.6$ (s, $C \mathrm{H}=), 114.5\left(\mathrm{~s},=C \mathrm{H}_{2}\right), 62.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $34.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 31.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $29.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 140.5$ (s).

6.7. $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(26 f)$

$\mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}(3.744 \mathrm{~g}, 22.94 \mathrm{mmol})$ and $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}=$ $\mathrm{CH}_{2}(12.50 \mathrm{~g}, 73.40 \mathrm{mmol})$ were reacted in a procedure analogous to that used for 26e. The mixture was warmed under vacuum $\left(120^{\circ} \mathrm{C}, \quad 1.0 \times 10^{-2} \mathrm{mbar}\right)$ and $\mathbf{2 6 f}$ $(11.87 \mathrm{~g}, 22.02 \mathrm{mmol}, 96 \%)$ remained as a colorless oil that was 83% pure by ${ }^{31} \mathrm{P}$ NMR and gave satisfactory results in preparative reactions.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.85-5.67(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=)$, 4.99-4.89 (m, 6H, $\left.=\mathrm{CH}_{2}\right), 3.79-3.61\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 2.02-2.00 (m, 6H, $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), \quad 1.79-1.26(\mathrm{~m}, \quad 42 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{7}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 139.6(\mathrm{~s}, \mathrm{CH}=), 114.5\left(\mathrm{~s},=\mathrm{CH}_{2}\right)$, $62.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 34.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 31.6$ (d, $\left.{ }^{3} J_{\mathrm{CP}}=4.9 \mathrm{~Hz}, \quad \mathrm{POCH}_{2} C \mathrm{H}_{2}\right), \quad 29.9 \quad\left(\mathrm{~s}, \quad \mathrm{CH}_{2}\right), \quad 29.8$ (s, $\left.C \mathrm{H}_{2}\right), 29.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.3$ (s, $C \mathrm{H}_{2}$) ; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 140.4$ (s, 83%). 9.0 (s, 17%).

6.8. trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}(27 a)$

A Schlenk flask was charged with $\mathrm{Fe}(\mathrm{BDA})(\mathrm{CO})_{3}[18]$ $(0.800 \mathrm{~g}, 2.80 \mathrm{mmol})$, toluene $(60 \mathrm{~mL})$, and $26 \mathrm{a}(2.162 \mathrm{~g}$, 7.550 mmol). The solution was stirred for two weeks and periodically monitored by ${ }^{31} \mathrm{P}$ NMR. The solvent was removed by oil pump vacuum. Pentane (5 mL) was added, and the mixture was filtered through a short pad of neutral alumina using pentane and then pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (67:33 v / v). The solvent was removed from the filtrate by oil pump vacuum to give 27 a as a yellow oil $(0.339 \mathrm{~g}, 0.476 \mathrm{mmol}$, 17\%) [29].

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.67-5.65\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 4.98-4.89 (m, 12H, $\left.=\mathrm{CH}_{2}\right), 4.12-4.00\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 2.05-2.04 (m, 12H, CH2), 1.60-1.49 (m, 12H, CH2); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 212.8\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=39.8 \mathrm{~Hz}, \mathrm{CO}\right), 137.9(\mathrm{~s}, \mathrm{CH}=)$, $115.3\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 65.1\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 30.2\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 185.7$ (s, 90%), 172.0 (s, 10%).

IR (cm ${ }^{-1}$, oil film): 2953 (w), 2023 (w), 1961 (w), 1895 (s, $\left.v_{\mathrm{CO}}\right), 1640(\mathrm{w}), 992(\mathrm{~m}) . \operatorname{MS}$ [32]: $712\left(27 \mathrm{a}^{+}, 3 \%\right), 629$ ($[\mathbf{2 7 a} \mathbf{a}-3 \mathrm{CO}]^{+}, 5 \%$), 342 ($[\mathbf{2 7 a}-3 \mathrm{CO}-\mathbf{2 6 a}]^{+}, 100 \%$).

6.9. trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}$ (27b)

$\mathrm{Fe}(\mathrm{BDA})(\mathrm{CO})_{3}(0.429 \mathrm{~g}, 1.50 \mathrm{mmol})$, toluene $(30 \mathrm{~mL})$, and 26b ($1.329 \mathrm{~g}, 4.047 \mathrm{mmol}$) were combined in a procedure analogous to that used for 27a. A similar workup (rinsing with $75: 25 \mathrm{v} / \mathrm{v}$ pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave $\mathbf{2 7 b}$ as a yellow oil ($0.588 \mathrm{~g}, 0.738 \mathrm{mmol}, 49 \%$) [29].

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.69-5.60(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}=)$, 4.95-4.87 (m, 12H, $\left.=\mathrm{CH}_{2}\right), 4.01-4.00\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 1.93-1.88 (m, $\left.12 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}=\right), 1.88-1.35(\mathrm{~m}, \quad 24 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 212.9\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=39.5 \mathrm{~Hz}, \mathrm{CO}\right)$, $138.6(\mathrm{~s}, \mathrm{CH}=), 114.8\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 65.6\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 33.6(\mathrm{~s}$, $\left.C \mathrm{H}_{2} \mathrm{CH}=\right), 30.1\left(\mathrm{~s}, \mathrm{OCH}_{2} C \mathrm{H}_{2}\right), 25.4\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, 185.5 (s).

IR (cm^{-1}, oil film): 3078 (w), 2935 (w), 2860 (w), 1893 (s, ${ }^{v}$ CO), 1642 (w), 1472 (w), 994 (m), 961 (m). MS: 797 ($27 \mathbf{b}^{+}$, $3 \%), 712$ ($[\mathbf{2 7 b}-3 \mathrm{CO}]^{+}, 2 \%$), 384 ([27b-3CO-26b] $]^{+}, 100 \%$).

6.10. trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}(27 e)$

$\mathrm{Fe}(\mathrm{BDA})(\mathrm{CO})_{3} \quad(0.3029 \mathrm{~g}, \quad 1.059 \mathrm{mmol})$, toluene (60 $\mathrm{mL})$, and 26e $(1.420 \mathrm{~g}, 2.859 \mathrm{mmol})$ were combined in a procedure analogous to that used for $\mathbf{2 7 b}$. A similar workup (neutral alumina column, first fractions only) gave 27e as a green oil ($0.767 \mathrm{~g}, 0.677 \mathrm{mmol}, 64 \%)$. Anal. Calc. for $\mathrm{C}_{63} \mathrm{H}_{114} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Fe}: \mathrm{C}, 66.77$; $\mathrm{H}, 10.14$. Found: C, 66.63; H, 10.29%.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.85-5.74(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}=)$, 5.06-4.98 (m, $\left.12 \mathrm{H},=\mathrm{CH}_{2}\right), 4.26-4.24\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 2.01-1.96 (m, $\left.12 \mathrm{H}, \quad \mathrm{CH} \mathrm{C}_{2} \mathrm{CH}=\right), 1.76-1.66(\mathrm{~m}, \quad 12 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), \quad 1.42-1.22\left(\mathrm{~m}, \quad 50 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{5}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 213.3(\mathrm{~s} \quad[33], \quad \mathrm{CO}), 139.2 \quad(\mathrm{~s}, \quad \mathrm{CH}=), 114.5$ $\left(\mathrm{s},=\mathrm{CH}_{2}\right), 66.1\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 34.2\left(\mathrm{~s}, \quad C \mathrm{H}_{2} \mathrm{CH}=\right), 30.8$ (s, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $29.8\left(\mathrm{~s}, \quad C \mathrm{H}_{2}\right), 29.6\left(\mathrm{~s}, \quad \mathrm{CH}_{2}\right), \quad 29.4$ (s, CH_{2}), $29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.2\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 185.6$ (s).

IR (cm^{-1}, oil film): 2926 (w), 2856 (w), 1895 (s, ${ }^{\text {(} \mathrm{CO}}$), 1640 (w), 1463 (w), 992 (m). MS [32]: 1134 (27e ${ }^{+}, 1 \%$), 1049 ([27e-3CO] ${ }^{+}, 1 \%$), 552 ([27e-3CO-26e] ${ }^{+}, 100 \%$).

6.11. $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}(\mathbf{2 7 f})$

$\mathrm{Fe}(\mathrm{BDA})(\mathrm{CO})_{3}(1.004 \mathrm{~g}, 3.509 \mathrm{mmol})$, toluene $(50 \mathrm{~mL})$, and $26 f(5.105 \mathrm{~g}, 9.475 \mathrm{mmol})$ were combined in a procedure analogous to that used for $\mathbf{2 7 b}$. After 8 d , the solvent was removed by oil pump vacuum. Pentane (5 mL) was added, and the mixture was filtered through a short pad of neutral alumina using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(75: 25 \mathrm{v} / \mathrm{v})$. Two fractions were collected, and the second was similarly filtered. The first fractions from each filtration were combined, and the solvent removed by oil pump vacuum to give $\mathbf{2 7 f}$ as a green oil $(1.117 \mathrm{~g}, 0.918 \mathrm{mmol}, 26 \%)$ [29].

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.84-5.74(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}=)$, $5.00-4.89\left(\mathrm{~m}, 12 \mathrm{H},=\mathrm{CH}_{2}\right), 4.02-3.94\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 2.32-2.01 (m, 12H, $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 1.69-1.62,1.35-1.26(2 \mathrm{~m}$, 12 H and $\left.72 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{7}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 212.2$ (s [33], $C \mathrm{O}), 139.2(\mathrm{~s}, C \mathrm{H}=), 114.1\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 65.6\left(\mathrm{~s}, \mathrm{OCH}_{2}\right)$, $33.8\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 30.4\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 29.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$,
$29.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, 25.8 ($\mathrm{s}, \mathrm{CH}_{2}$); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, 185.1 (s).

IR (cm^{-1}, oil film): 2926 (w), 2856 (w), 1895 (s, $\left.v_{\mathrm{CO}}\right)$, 1642 (w), 1463 (w), 992 (m). MS [32]: 1218 ($27 \mathbf{f}^{+},<2 \%$), 1133 ([27f-3CO] ${ }^{+},<2 \%$), 384 ([27f-3CO-26f $\left.]^{+}, 100 \%\right)$.
6.12. trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}\right)_{3} \mathrm{P}\right)$ (28b)

A two-necked flask was charged with $\mathbf{2 7 b}(0.450 \mathrm{~g}$, 0.565 mmol), Grubbs' catalyst ($0.0302 \mathrm{~g}, 0.0367 \mathrm{mmol}$, $6.5 \mathrm{~mol}^{\%} \%$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL ; the resulting solution is $0.0057 \mathbf{M}$ in $\mathbf{2 7 b}$), and fitted with a condenser. The solution was refluxed. After 19 h , a second charge of Grubbs' catalyst was added $(0.0302 \mathrm{~g}, 0.0367 \mathrm{mmol}, 6.5 \mathrm{~mol} \%)$. After another 20 h , the solvent was removed by oil pump vacuum, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added. The mixture was filtered through a short pad of neutral alumina using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the filtrate by oil pump vacuum to give crude $\mathbf{2 8 b}(0.210 \mathrm{~g}, 0.298 \mathrm{mmol}$, 52%) as a yellow oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.66-5.10(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}=)$, 4.27-4.15 (m, 12H, OCH2), 2.12-1.93 (m, 12H, CH2), 2.42-1.35 (m, 36H, CH2); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, \quad 186.8-182.4$ (10 signals).

MS [32]: $712\left(\mathbf{2 8 b}^{+}, 20 \%\right), 626\left([\mathbf{2 8 b}-3 \mathrm{CO}]^{+}, 100 \%\right)$.
6.13. trans- $\left.\overparen{F e(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{O}\right)_{3} \mathrm{P}\right.}\right)$ (28e)

A two-necked flask was charged with 27 e (0.499 g , $0.441 \mathrm{mmol})$, Grubbs' catalyst $(0.024 \mathrm{~g}, \quad 0.029 \mathrm{mmol}$, $6.5 \mathrm{~mol} \%$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (65 mL ; the resulting solution is 0.0059 M in $\mathbf{2 7 e}$), and fitted with a condenser. The solution was refluxed. After 24 h , a second charge of Grubbs' catalyst was added ($0.024 \mathrm{~g}, 0.029 \mathrm{mmol}, 6.5 \mathrm{~mol} \%$). After 3 d , a workup identical to that used for 27 b gave crude $\mathbf{2 7 e}$ $(0.209 \mathrm{~g}, 0.199 \mathrm{mmol}, 45 \%)$ as a viscous light yellow oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 5.52-5.36(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}=)$, 4.32-4.10 (m, 12H, OCH2), 2.28-1.06 (m, 84H, CH2); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 185.6$ (s, 10\%), 185.5 (s, 33\%), 185.4 (s, 57\%).

MS [32]: 1049 (27e, 1\%), 964 (27e-3CO, 100\%).
6.14. trans- $\left.\overparen{\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{O}\right)_{3} \mathrm{P}\right.}\right)$ (29b)

A Fischer-Porter bottle was charged with $\mathbf{2 8 b}(0.259 \mathrm{~g}$, $0.363 \mathrm{mmol}), \quad \mathrm{ClRh}\left(\mathrm{PPh}_{3}\right)_{3} \quad(0.050 \mathrm{~g}, \quad 0.054 \mathrm{mmol}$, $15 \mathrm{~mol} \%$), toluene (15 mL), and H_{2} (5 bar). The red solution was stirred at $70^{\circ} \mathrm{C}$. After 72 h , the solvent was removed by oil pump vacuum. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added. The mixture was filtered through a short pad of neutral alumina using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed by oil pump vacuum to give a yellow oil $(0.184 \mathrm{~g}$, 0.256 mmol). The residue was chromatographed on a neutral alumina column $(2.0 \times 20 \mathrm{~cm}, 85: 15 \mathrm{v} / \mathrm{v}$ hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product frac-
tion by oil pump vacuum to give $\mathbf{2 9 b}(0.010 \mathrm{~g}, 0.014 \mathrm{mmol}$, $4 \% ; 82 \%$ NMR purity) as a thick yellow oil.

NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 4.18-4.13\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 1.95-1.18 (m, $\left.48 \mathrm{H}, \quad \mathrm{C} \mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad(\mathrm{CO}$ signal not detected), $65.6\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 29.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $27.9\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 25.3\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 184.4$ (s, 82\%), 184.6 (s, 11\%), 185.3 (s, 7\%).

IR (cm^{-1}, oil film): 2937 (w), 2860 (w), 1895 (s, v_{CO}), 1011 (m). MS [32]: 718 ($29 \mathbf{b}^{+}, 23 \%$), 634 ([29b-3CO] $]^{+}$, 100%).

6.15. trans- $\left.\overparen{\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{18} \mathrm{O}\right)_{3} \mathrm{P}\right.}\right)(29 e)$

A Fischer-Porter bottle was charged with 28e (0.240 g , $0.229 \mathrm{mmol}), \quad \mathrm{ClRh}\left(\mathrm{PPh}_{3}\right)_{3} \quad(0.0318 \mathrm{~g}, \quad 0.0343 \mathrm{mmol}$, $15 \mathrm{~mol} \%$), toluene (15 mL), and H_{2} (5 bar). The red solution was stirred at $70^{\circ} \mathrm{C}$. After 72 h , the solvent was removed by oil pump vacuum. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added. The mixture was filtered through a short pad of neutral alumina using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed by oil pump vacuum to give 29e $(0.223 \mathrm{~g}, 0.211 \mathrm{mmol}$, $92 \% ; 83 \%$ NMR purity) as a viscous light yellow oil.

NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}, 4.26-4.10\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 1.78-1.17 (m, 96H, CH $)_{2}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 203.7$ (s [33], CO), $65.3\left(\mathrm{~m}, \mathrm{OCH}_{2}\right), 30.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.8(\mathrm{~s}$, CH_{2}), $28.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.1(\mathrm{~s}$, $C H_{2}$), $25.9\left(\mathrm{~s}, \quad C \mathrm{H}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 185.5$ (s, 17\%), 185.8 (s, 83\%).

IR (cm ${ }^{-1}$, oil film): 2926 (w), 2853 (w), 2358 (w), 1895 (s, $\left.{ }^{v}{ }_{\mathrm{CO}}\right) . \mathrm{MS}[32]: 1054\left(29 \mathrm{e}^{+}, 10 \%\right), 970\left([29 \mathrm{e}-3 \mathrm{CO}]^{+}, 100 \%\right)$.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG, GL 300/9-1) and Welch Foundation for support.

References

[1] Early communications: (a) J.M. Martín-Alvarez, F. Hampel, A.M. Arif, J.A. Gladysz, Organometallics 18 (1999) 955;
(b) E.B. Bauer, J. Ruwwe, J.M. Martín-Alvarez, T.B. Peters, J.C. Bohling, F.A. Hampel, S. Szafert, T. Lis, J.A. Gladysz, Chem. Commun. (2000) 2261.
[2] E.B. Bauer, J.A. Gladysz, in: R.H. Grubbs (Ed.), Handbook of Metathesis, vol. 2, Wiley/VCH, New York, 2003, p. 403.
[3] (a) T.-A.V. Khuong, J.E. Nuñez, C.E. Godinez, M.A. GarciaGaribay, Acc. Chem. Res. 39 (2006) 413;
(b) M.A. Garcia-Garibay, Proc. Nat. Acad. Sci. 31 (2005) 10771.
[4] K. Skopek, M.C. Hershberger, J.A. Gladysz, Coord. Chem. Rev. 251 (2007) 1723.
[5] Representative full papers from the Garcia-Garibay group: (a) Z. Dominguez, H. Dang, M.J. Strouse, M.A. Garcia-Garibay, J. Am. Chem. Soc. 124 (2002) 7719;
(b) Z. Dominguez, T.-A. Khuong, H. Dang, C.N. Sanrame, J.E. Nuñez, M.A. Garcia-Garibay, J. Am. Chem. Soc. 125 (2003) 8827; (c) C.E. Godinez, G. Zepeda, C.J. Mortko, H. Dang, M.A. GarciaGaribay, J. Org. Chem. 69 (2004) 1652;
(d) T.-A.V. Khuong, H. Dang, P.D. Jarowski, E.F. Maverick, M.A. Garcia-Garibay, J. Am. Chem. Soc. 129 (2007) 839;
(e) P.D. Jarowski, K.N. Houk, M.A. Garcia-Garibay, J. Am. Chem. Soc. 129 (2007) 3110.
[6] (a) M.J. Frampton, H.L. Anderson, Angew. Chem., Int. Ed. 46 (2007) 1028;
(b) M.J. Frampton, H.L. Anderson, Angew. Chem. 119 (2007) 1046.
[7] (a) J. Stahl, W. Mohr, L. de Quadras, T.B. Peters, J.C. Bohling, J.M. Martín-Alvarez, G.R. Owen, F. Hampel, J.A. Gladysz, J. Am. Chem. Soc. 129 (2007) 8282;
(b) L. de Quadras, E.B. Bauer, W. Mohr, J.C. Bohling, T.B. Peters, J.M. Martín-Alvarez, F. Hampel, J.A. Gladysz, J. Am. Chem. Soc. 129 (2007) 8296;
(c) L. de Quadras, E.B. Bauer, J. Stahl, F. Zhuravlev, F. Hampel, J.A. Gladysz, New. J. Chem. 31 (2007) 1594;
(d) G.R. Owen, J. Stahl, F. Hampel, J.A. Gladysz, Chem. Eur. J., (2008) 14, in press, doi:10.1002/chem. 200701268.
[8] (a) E.B. Bauer, F. Hampel, J.A. Gladysz, Organometallics 22 (2003) 5567;
(b) N. Lewanzik, T. Oeser, J. Blümel, J.A. Gladysz, J. Mol. Catal. A 254 (2006) 20.
[9] T. Shima, E.B. Bauer, F. Hampel, J.A. Gladysz, Dalton Trans. (2004) 1012.
[10] T. Shima, E.B. Bauer, unpublished results, Universität ErlangenNürnberg.
[11] G.S. Kottas, L.I. Clarke, D. Horinek, J. Michl, Chem. Rev. 105 (2005) 1281.
[12] T.C. Bedard, J.S. Moore, J. Am. Chem. Soc. 117 (1995) 10662.
[13] (a) T. Shima, F. Hampel, J.A. Gladysz, Angew. Chem., Int. Ed. 43 (2004) 5537;
(b) T. Shima, F. Hampel, J.A. Gladysz, Angew. Chem. 116 (2004) 5653.
[14] A.J. Nawara, T. Shima, F. Hampel, J.A. Gladysz, J. Am. Chem. Soc. 128 (2006) 4962.
[15] L. Wang, T. Shima, F. Hampel, J.A. Gladysz, Chem. Commun. (2006) 4075.
[16] G.D. Hess, F. Hampel, J.A. Gladysz, Organometallics 26 (2007) 5129.
[17] (a) L. Wang, F. Hampel, J.A. Gladysz, Angew. Chem., Int. Ed. 45 (2006) 4372;
(b) L. Wang, F. Hampel, J.A. Gladysz, Angew. Chem. 118 (2006) 4479.
[18] C.R. Graham, G. Scholes, M. Brookhart, J. Am. Chem. Soc. (1977) 1180.
[19] L. Wang, unpublished results, Universität Erlangen-Nürnberg.
[20] K. Skopek, Doctoral Dissertation, Universität Erlangen-Nürnberg, 2008.
[21] A.J. Nawara-Hultzsch, Doctoral Dissertation, Universität ErlangenNürnberg, 2008.
[22] G.D. Hess, T. Fiedler, D. Skaper, J.E. Nuñez, unpublished results, Universität Erlangen-Nürnberg.
[23] A.G. Davies, M.J. Parrott, B.P. Roberts, J. Chem. Soc., Chem. Commun. (1974) 27.
[24] S. Bakkas, M. Julliard, M. Chanon, Tetrahedron 43 (1987) 501.
[25] T. König, W.D. Habicher, U. Hähner, J. Pionteck, C. Rüger, K. Schwetlick, J. Prakt. Chem. 334 (1992) 333.
[26] R.L. Keiter, J.W. Benson, E.A. Keiter, T.A. Harris, M.W. Hayner, L.L. Mosimann, E.E. Karch, C.A. Boecker, D.M. Olson, J. VanderVeen, D.E. Brandt, A.L. Rheingold, G.P.A. Yap, Organometallics 16 (1997) 2246, and Refs. [6b,30] therein.
[27] H. Inoue, T. Takei, G. Heckmann, E. Fluck, Z. Naturforsch. 46b (1991) 682.
[28] (a) H.L. Conder, M.Y. Darensbourg, J. Organomet. Chem. 67 (1974) 93;
(b) P.D. Ginderow, Acta Cryst. B30 (1974) 2798;
(c) M. Barrow, N.L. Cromhout, D. Cunningham, A.R. Manning, P. McArdle, J. Renze, J. Organomet. Chem. 563 (1998) 201.
[29] Isolated 27 a is ca. 90% pure (${ }^{31} \mathrm{P}$ NMR), and $\mathbf{2 7 b}, \mathbf{e}, \mathbf{f}$ are $>98 \%$ pure (no other detectable ${ }^{31} \mathrm{P}$ NMR signals). However, 27b,f did not give satisfactory microanalyses [20].
[30] J. Bravo, J. Castro, S. García-Fontán, E.M. Lamas, P. RodríguezSeoane, Z. Anorg. Allg. Chem. 629 (2003) 297.
[31] K. Skopek, F. Hampel, J.A. Gladysz, Inorg. Chem., submitted for publication.
[32] FAB (3-nitrobenzyl alcohol matrix); m / z for the most intense peak of the isotope envelope.
[33] Due to the peak width and signal/noise ratio, the phosphorus coupling could not be discerned.

[^0]: * Corresponding author. Address: Department of Chemistry, Texas A\&M University, P.O. Box 30012, College Station, TX 77842-3012, USA. Tel.: +1979 845 1399; fax: +1979 8455629 .

 E-mail address: gladysz@mail.chem.tamu.edu (J.A. Gladysz).

